
Massively parallel computing: A Sandia
perspectiveq

David E. Womblea,*, Sudip S. Dosanjha, Bruce Hendricksona,
Michael A. Herouxa, Steve J. Plimptona, James L. Tomkinsa,

David S. Greenbergb,1

a Sandia National Laboratories, P.O. Box 5800, Mail Stop 1110, Albuquerque, NM 87185-1110, USA
b IDA/CCS, 17100 Science Drive, Bowie, MD 20715-4300, USA

Abstract

The computing power available to scientists and engineers has increased dramatically in the

past decade, due in part to progress in making massively parallel computing practical and

available. The expectation for these machines has been great. The reality is that progress has

been slower than expected. Nevertheless, massively parallel computing is beginning to realize

its potential for enabling signi®cant breakthroughs in science and engineering. This paper

provides a perspective on the state of the ®eld, colored by the authors' experiences using large-

scale parallel machines at Sandia National Laboratories. We address trends in hardware,

system software and algorithms, and we also o�er our view of the forces shaping the parallel

computing industry. Ó 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Massive parallel processing systems; Hardware; System software; Algorithms; Applications;

Sandia National Laboratories

1. Introduction

Nobody seems to agree on when parallel computing started, but we can agree that
it has been around for a long time. Certainly, many of the concepts go back to the
19th century. However, from a practical standpoint, and for the purposes of this

www.elsevier.com/locate/parco

Parallel Computing 25 (1999) 1853±1876

q Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under Contract DE-AC04-94AL85000.
* Corresponding author.

E-mail address: dewombl@cs.sandia.gov (D.E. Womble)
1 Contributions to this paper represent work done at Sandia National Laboratories.

0167-8191/99/$ - see front matter Ó 1999 Published by Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (9 9) 0 0 0 6 8 - X

paper, we consider the beginning of parallel computing to be sometime around the
middle 1980s. It was at this time that parallel computers ®rst began to be pro-
grammed as true parallel machines and to compete with the established supercom-
puters, like the Cray vector machines.

There are several reasons why parallel computing became practical during the
mid-1980s. First and foremost, were the hardware advances. Miniaturization of the
electronics and the increasing power of the single-chip microprocessor allowed
processors with su�cient computational power to be packaged together. Also, the
ability to communicate between processors improved to match the computational
power of these one-chip processors.

Two competing hardware approaches battled for dominance in the late 1980s:
single instruction multiple data (SIMD) and multiple instruction multiple data
(MIMD). In SIMD machines, every processor executes the same instruction at each
clock cycle but on di�erent data. In MIMD machines, the processors operate in-
dependently, and synchronization is left to the user. In the evolutionary struggle
between hardware paradigms, SIMD has fallen by the wayside. Although SIMD
machines can be cost e�ective for some applications, they have proven to be less
¯exible and less general purpose than MIMD machines.

Hardware can also be classi®ed as either shared memory or distributed memory.
In a shared-memory machine, any processor can access directly any part of memory.
In a distributed-memory machine, memory is assigned to a processor or node and
data are shared through interprocessor communication. In recent years, the concepts
of shared memory and distributed memory have essentially merged. Individual
computational nodes have shared memory, while `massive' parallelism is usually
achieved by replicating these nodes and using distributed memory.

This classi®cation of machines is also made somewhat di�cult by the fact that
some vendors have tried to provide a single memory image on a distributed-memory
machine. The goal is to remove the burden of message passing parallelism from the
programmer by making the machine look more like a large workstation. This has
been successful for small number of processors but less so as the number of pro-
cessors increases. The failure has been due less to the hardware than to the fact that
compilers are unable to recognize and exploit data locality. The Cray T3E, for ex-
ample, has a very light-weight communication mode, but explicit message passing
remains the most e�ective way to use more than a few processors. Shared-memory
programming on distributed-memory machines may not be the holy grail, but it
continues to provide a quest for many researchers.

It may be worthwhile here to note that shared-memory parallelism involves im-
plicit communication and explicit synchronization, while distributed-memory par-
allelism involves explicit communication and implicit synchronization. The right
approach depends on the hardware available and the amount of parallelism desired.

Table 1 shows a range of machines classi®ed by instruction architecture and by
memory type. This table is, of course, incomplete; it is meant to be illustrative of the
types of machines in each category rather than exhaustive; however, we think we
have listed the machines that can be considered commercial successes. The CRAY 1
and Cyber 205 shown in the table are vector machines, but this is a form of

1854 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

®ne-grained parallelism and illustrates the shared memory, SIMD approach. Also,
the Origin 2000 implements the shared memory through a non-uniform memory
architecture (NUMA).

Hardware is only one member of a triad required for e�ective parallel computing.
The other members are system software and algorithms. Research and development
in these areas quickly followed the hardware improvement. Even though some `full-
feature' operating systems were adapted for parallel computing, many of the suc-
cessful machines used a more custom approach. `Stripped-down' operating systems
that focused on speed, low memory requirements and fast communications (espe-
cially message latency) provided the best results. Compilers and tools have followed
somewhat more slowly. Although automatically parallelizing compilers remain a
very active area of research, most parallel machines have compilers that are based on
directives or message passing library extensions. Similarly, most parallel debuggers
have little more capability than low-end, single-processor workstation debuggers.

The third member of the triad is algorithms. The history of parallel numerical
algorithms stretches back for many years and includes Jacobi iteration, von Neu-
mann's weather forecasting, computing for the Manhattan project, asynchronous
iterations, and many more. These algorithms focus on the applications themselves.
Recent algorithmic developments have generally exploited the realization that the
best serial algorithms are often the best parallel algorithms. In other words, high
parallel e�ciency usually cannot compensate for low algorithmic e�ciency. A
complementary e�ort has been devoted to enabling algorithms, those that enable or
support the use of a parallel machine. These include load-balancing and scheduling
methodologies as well as collective communication algorithms.

Finally, it is worth mentioning data structures explicitly, although they are in-
separably linked with algorithms. E�ective use of parallel computers depends on an
e�ective data layout. That is, data must be stored so that they are as `close' as
possible to the processor that will be using them in computations. Algorithm design
and data layout are often done with the idea of minimizing communications,
although an alternate goal is to minimize transfers between levels in the memory
hierarchy that now includes local main memory and distributed main memory. To
date, the most e�ective parallelism has been done by hand. Also, until now, memory
layout and data structures have been mostly static. However, this is changing, and
the need for dynamic memory use is increasing. This trend will increase the need for

Table 1

Classi®cation of several machines as either SIMD or MIMD and as either shared memory or distributed

memory

Shared memory Distributed memory

SIMD Cray 1 Connection Machine CM-2, CM-5

CDC Cyber 205 MasPar

MIMD Cray XMP, YMP Intel iPSC-2, iPSC-860, Paragon, T¯ops

SGI Origin 2000 Cray T3D, T3E

IBM SP1, SP2

nCUBE 10, nCUBE 2

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1855

tools for algorithm design, data layout, memory management and communication
paradigms.

Most of the authors of this paper have spent a signi®cant portion of their careers
at Sandia National Laboratories where the focus has been on the use of distributed-
memory parallel computing for large-scale simulations in science and engineering.
Because of this research focus, this paper will focus on the practical aspects of
parallel computing and its use in applications. It will avoid historical presentations
except where necessary. Section 2 will present an overview of hardware that has
made an impact in practical, large-scale simulations. Section 3 will discuss operating
systems and tools. Section 4 will discuss algorithms and enabling technologies. The
focus in these three sections will be what is necessary for the practical use of parallel
computers and what will be required for continued progress. Sections 5 and 6 will
present an overview of industry and government impact on parallel computing.
Finally, Section 7 will summarize the paper with an eye toward the future.

2. The development of MPP hardware

Throughout the 1980s, supercomputing was dominated by vector processors such
as those from Cray Research. By the end of that decade these machines were
modestly parallel with as many as eight processors; however, they were mainly used
in a mode in which applications ran on only a single processor. It was during this
period, though, that the development of large-scale parallel machines began. In the
middle to late 1980s, several companies developed small-scale parallel computer
systems with a few tens of processors. Most of these machines had a shared-memory
architecture; however, there were a couple of large-scale parallel computer systems
that were developed at this time that would have a major impact on the progress of
massively parallel processing systems (MPPs). These were the Connection Machines
from Thinking Machines Corporation and the nCUBEs from nCUBE Corporation.

In 1987, Sandia National Laboratories began its transition from vector processing
to massively parallel computing with its acquisition of a 1024 processor nCUBE 10
machine (see Table 1). The nCUBE 10 was a hypercube with a distributed memory
and MIMD architecture in which each processor had 512KB of memory and a
performance equivalent to about that of a VAX-11/780. The full system was able to
achieve about 100 MFlops on a real application. With this machine Sandia re-
searchers John Gustafson, Gary Montry, and Bob Benner were able to demonstrate
scaling of greater than a factor of 200 on a ®xed size real scienti®c application and to
win the Karp Challenge and the ®rst Gordon Bell award [10]. In fact, ®xed-size
speedups over 500 and scaled speedups over 1000 were achieved for a number of
applications. Sandia was able to port several of its scienti®c and engineering appli-
cation codes to this machine. On many of these application codes the nCUBE 10 was
faster than a Cray YMP processor.

The nCUBE 2 machine was introduced in 1990. This machine had a theoretical
maximum of 8192 processors, however, none of that size was ever built. In 1990,
Sandia acquired an nCUBE 2 with 1024 processors as a replacement for its nCUBE

1856 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

10. This machine has 1024 processors each with 4MB of memory and a peak per-
formance of about 2.7 G¯ops. Sandia ported a signi®cant fraction of its high-end
computing workload to this machine. For most of Sandia's application codes this
machine proved to be more capable than all eight processors of a Cray-YMP. The
nCUBE 10 and the nCUBE 2 machines are well-balanced architectures, in that their
interconnect performance (latency and bandwidth) is su�ciently high that it does not
limit the performance of typical applications. Also, these machines proved to be very
reliable. Sandia's original nCUBE 2 and a second one acquired later are still in use
today, and they have gone several years without a hardware failure.

The ®rst computer system from Thinking Machines to have general scienti®c
applicability was the CM2. This machine had up to 65,536 one bit processors in
which 32 processors shared a Weitek ¯oating point processor. In e�ect, a fully
con®gured CM2 had 2048 parallel ¯oating point processors. The CM2 had a SIMD
architecture with a hypercube interconnect. The CM2 used a front-end machine to
provide an instruction stream and to process any serial code in the application. Each
processor executed the same instruction in lock step with all other processors as-
signed to a particular job. The CM2 had a good balance between its interconnect and
processor performance and it became a successful and widely used MPP system.
Sandia researchers found this machine to be a good match for a limited set of ap-
plications; however, they found the ¯exibility of the MIMD architecture, like that of
the nCUBE machines that led to wider applicability for scienti®c and engineering
applications.

Thinking Machines Corporation's third generation computer system, the CM5,
replaced the CM2 in about 1992. The architecture of this machine was such that it
could be used in either the SIMD mode or MIMD mode. This machine used four
vector processors together with a Sun Microsystems SPARC processor for each
node. This machine was not as well balanced as the CM2, and it was not nearly as
successful in the marketplace (see Table 2 for a comparison of several MPP com-
puter systems).

During the late 1980s and into the 1990s, Intel Corporation became a major
player in MPP computing. Early Intel machines (IPSC1, IPSC2, and IPSC860) were
built with a few tens to a hundred or so processors and had hypercube interconnects
with distributed-memory MIMD architectures. However, with the Delta machine
and then the Paragon, Intel moved into large-scale MPPs. The one-of-a-kind Delta
and subsequent production Paragon systems are distributed-memory MIMD ar-
chitectures with 2D mesh interconnects. Paragons were built with either two pro-
cessor or three processor nodes.

In 1993, Intel delivered to Sandia a Paragon computer system with almost 3800
processors. Sandia's large Paragon had the two processor nodes. Sandia and Intel
researchers were able to achieve 143 G¯ops on the MP-LINPACK benchmark with
this machine. This machine became Sandia's workhorse computer system for high-
end computing a year or so after its installation at Sandia.

As part of a wider shakeout in the industry, Intel announced in 1996 that it had
decided to get out of the supercomputing business. However, before this an-
nouncement Intel had signed a contract with Sandia as part of the Department of

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1857

Energy (DOE) Accelerated Strategic Computing Initiative to build the world's ®rst
tera-scale computer system. As a result the Intel T¯ops computer system that Intel
delivered to Sandia in stages during the ®rst half of 1997 is a one-of-a-kind machine.

The T¯ops machine has more than 9300 processors. The system is very well
balanced between processor speed and interconnect performance. It has a distrib-
uted-memory MIMD architecture with a very fast two layer mesh interconnect. The
machine has several unique features which have proven to be very valuable. These
include a completely separate communications network for system monitoring and
management. It also has a high level of redundancy in the hardware. The machine is
also unique in that it is split into three partitions with a classi®ed end, an unclassi®ed
end, and a center section that can be switched between ends in approximately 20 min.
While the split con®guration is the usual con®guration, the machine can easily be
con®gured as a single system for either classi®ed or unclassi®ed computing on a
single application.

The T¯ops machine achieved a major milestone on 4 December 1996 when it
became the ®rst general purpose computer to achieve a sustained trillion ¯oating
point operations per second on the MP-LINPACK benchmark. (In June of 1997 the
full machine achieved 1.338 T¯ops on the MP-LINPACK benchmark.) T¯ops has
proven itself to be a phenomenal success. It exhibits unprecedented reliability;
availability exceeds 90%, and over 80% of its theoretically available cycles are used
by real applications. Researchers have been able to scale their application codes to
the full machine capacity, and there is a continuous backlog of large parallel ap-
plications waiting to run on the machine. The Intel T¯ops machine has recently been
upgraded to a peak speed exceeding 3 T¯ops with memory of 1.2 Tbytes.

In the early 1990s, Cray Research moved into the MPP market with its T3D
computer system. This machine used a three-dimensional torus interconnect with a
distributed memory single program multiple data (SPMD) architecture. The ma-
chine is very well balanced between processor performance and interconnect per-
formance and has proven to be a very scalable architecture. Cray's second generation
of this architecture, the T3E, has proven to be very successful. With the exception of
the Intel T¯ops machine the Cray T3E is the only current high-end computer

Table 2

Characteristics of some signi®cant MPP computer system

Computer

system

Year of ®rst

installation

Architecture Interconnect Scalability

and balance

nCUBE

10

1987 Distributed memory, MIMD Hypercube Good

nCUBE 2 1990 Distributed memory, MIMD Hypercube Good

CM2 1989 Distributed memory, SIMD Hypercube Good

CM5 1992 Distributed memory, SIMD/

MIMD

Fat tree Fair

Paragon 1993 Distributed memory, MIMD 2D mesh Excellent

T¯ops 1997 Distributed memory, MIMD 2D mesh Excellent

T3D 1994 Distributed memory, MIMD 3D torus Excellent

T3E 1997 Distributed memory, MIMD 3D torus Excellent

1858 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

architecture to demonstrate scaling to very large number of processors on a wide
variety of scienti®c and engineering applications.

Architectures for high-end systems are continuing to evolve rapidly. Intel has left
the business as have Thinking Machines and nCUBE. Cray Research was acquired
by Silicon Graphics Incorporated and has decided that there will be no follow-on to
the T3E architecture. International Business Machines is, in its new products,
building a hybrid distributed-memory system with symmetric multi-processor (SMP)
nodes. Even though the distributed-memory architecture has proven to provide
scalability to nearly 10,000 processors (T¯ops) the industry is moving towards an
unproven architecture of a cluster of large SMPs with weak interconnects. We ®nd
this trend to be worrisome and fear that it will prove to be a major setback for high-
end computing. To date, success in massively parallel computing has been achieved
with computer architectures that are well balanced between processor performance
and interconnect performance, so the slow connections between SMPs are likely to
be problematic. Also, clusters of SMPs require more complex programming models
(e.g., both threads and message passing) than pure distributed-memory machines.

We are signi®cantly more optimistic about another trend in high-end architectures
± the prevalence of build-your-own parallel machines comprised entirely of com-
modity components. Throughout the 1990s, there has been a trend towards building
parallel machines out of commodity pieces, but each of the major vendors retains
some proprietary components. But in the past few years there has been a ground-
swell of interest in constructing machines entirely out of o�-the-shelf hardware and
open source software. Several machines have been constructed this way with mul-
tiple hundreds of processors which exhibit outstanding price/performance. We are
optimistic that the remaining challenges can be addressed to allow these systems to
scale to thousands of processors.

3. System software

System software includes operating systems (OSs), compilers, debuggers and
more. It is absolutely necessary, but in the case of high-performance computing, it
has not met the basic expectations of many of its users. It has rarely provided a
convenient user interface, portability, or highly e�cient use of the underlying
hardware. Highest performance often required reorganizing the structure of a code,
adding system-speci®c subroutine calls or directives, and weeks of tuning. For ex-
ample, the CM-5 vector units, the T3Ds block transfer engine, and the second and
third processors of Paragon-class machines can only be accessed via unportable,
mostly undocumented techniques.

But, users need not despair. Recent trends in hardware architecture such as the
move toward increased (sometimes exclusive) use of commodity hardware and pe-
ripherals, the shift from 32- to 64-bit addressing, and the increased availability of
multi-processor shared-memory systems each provide an opportunity for improved
system software. It may be possible for high-performance modi®cations to be
leveraged on the explosive development of open OSs such as Linux or to be

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1859

piggy-backed on the necessary OS re-implementations of memory and ®le-system
interfaces to take advantage of the larger address spaces and SMP architectures.

1999 and 2000 will be key years for the development of the system software. Ways
must be found to add parallelism so that both shared-memory and distributed-
memory performance is improved. The remainder of this section reviews past system
software approaches and recommends some new directions.

3.1. Partitioned system design

In order to take advantage of these architectural transitions, it is desirable to
amplify a trend in system software toward partitioning of services.

Traditionally, system software for large-scale systems has been built under one of
two paradigms: full-custom or minor modi®cations to desktop systems. Neither
approach has been completely successful. Full-custom systems can provide high
performance and direct access to specialized new hardware features. However, they
are expensive to produce, maintain and administer. More importantly, they are
rarely portable to new systems. Conversely, desktop systems are designed to run on
commodity processors and peripherals and inherit the mass-market cost structure.
Yet the desktop systems rarely allow e�cient access to new hardware features and
often include overhead and restrictions which are necessary in their native envi-
ronment but detrimental in high-end systems.

Both of these already ¯awed approaches are becoming even more di�cult to
apply. The full-custom OSs must support increasingly complex hardware architec-
tures ± a system which only supports one type of disk, one type of tape, and its own
internal network cards is now considered unusable. On the other hand the high-end
system requirement to run without rebooting for months at a time while supporting
hundreds of users will not be met by desktop system software designed for single-
user systems which are turned o� at 5:00 pm each day. Increasingly, desktop systems
concentrate on the need to protect inexperienced users and choose implementations
which prevent experienced users from e�ciently exploiting the hardware.

The partitioned system approach attempts to marry the best of custom and
commodity systems. Partitioning makes the distributed nature of future architectures
a virtue rather than a challenge. System software can be naturally partitioned along
hardware boundaries; part of the machine can run a simple, custom kernel while
another part can run a modi®ed, full-functionality workstation OS. The kernel
provides only the most basic functionality needed for highest performance appli-
cations while the workstation OS provides the user interface and support for pe-
ripheral devices. The result is a system with better maintainability, expandability,
and robustness.

3.2. Puma and the ASCI/red machine

Sandia has successfully applied this partitioned approach to its large Intel systems
[9]. We have been able to routinely run jobs using thousands of nodes and hundreds
of GBs of memory over several days. On 32MB Paragon nodes we are able to

1860 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

allocate 32MB data arrays. Message passing overhead is su�ciently low that parallel
e�ciencies exceeding 90% on thousands of processors are not uncommon.

Both the Paragon and T¯op machines use a variant of OSF1/AD Unix as their
full-function OS. This OS runs on a service partition (about 15 nodes), and an IO
partition (about 50 nodes.) The service partition handles user logins, parallel job
launch, batch queues, debugger interfaces, and other user-oriented services. The IO
partition supports all disk drives and all high-speed, o�-machine networking. A
custom kernel runs on the remaining nodes which compose the compute partition.

The custom kernels (SUNMOS on the Paragon and Puma/Cougar on the T¯op)
run very close to the hardware ± they attempt to provide as much access and as little
overhead as possible. The memory footprint is less than 1MB, few if any daemons
compete for processor time, cache and TLB use is minimized, and internode com-
munication is an optimized (approximately 10 ms latency) native feature. In com-
parison, standard OSs have footprint well over 8MB, depend on a wide variety of
daemons to support normal operation, and provide external communication
through slow, general-purpose mechanisms like the TCP/IP stack (over 100 ms la-
tency). The custom kernels succeed by being very e�cient on the tasks they do
(virtual addressing, numeric exceptions, and local processor scheduling (e.g.,
threads)) and by not providing many functions common to standard OSs (such as
console support, http servers, etc.).

The functionality not provided by the custom kernel is spread across the machine
in a natural way. Maintenance of physical peripherals such as disk and ATM in-
terfaces is provided locally in the IO partition. Interactions with users, including
windowing and job scheduling, are provided locally in the service partition. Func-
tions which connect two types of interaction, e.g., a debugger must interact with the
user and with the running application, are split between partitions at their functional
boundaries. Thus the debugger's user interface and access to the source code resides
on the service partition while its ability to read and modify the memory of running
code resides on the compute partition.

Both the Paragon (until its processors became obsolete and it was decommis-
sioned) and the T¯op machine run 24 h/day, 7 days/week. Faulty hardware is re-
placed through hot-swapping of boards and on-the-¯y recon®guration of the system
hardware. The partitioned software allows for robust, maintainable service which
provides high e�ciency to Sandia's aggressive code teams.

3.3. Partitioning to improve service

We further illustrate the use and advantages of partitioning in the next several
subsections.

3.3.1. Memory management
The use of virtual memory (VM) and demand paging is one of the hallmarks of

today's computer systems. Unfortunately, although the VM/demand-paging com-
bination is highly successful for monolithic systems, the combination can be deadly
in the distributed realm. Sandia, and most of the early users of the Paragon, found

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1861

that when running a single integrated OSF partition the Paragon yielded very poor
performance. Since all nodes attempted to page in the executable from the same ®le
on a single disk, the use of additional nodes often led to a slow-down rather than a
speed-up. Synchronized applications tended to overwhelm the paging apparatus.
Sandia's remedy was to install SUNMOS (at that time a research prototype) which
allocated physical memory on each node, and never demand paged.

This solution did limit the applications' ability to create memory structures larger
than the physical memory size. This restriction was acceptable because applications
had access to huge amounts of physical memory (on the T¯op there is over 512GB
available). Problems which ran for days or weeks could easily be ®t within the
physical memory.

The restriction on demand paging matched the Sandia philosophy of applying big
machines to big problems which could not be solved otherwise. Even so, without
partitioning, the no-demand-paging solution might not have succeeded. Many user
services were designed to work within a multi-user, dynamically paged environment.
It would have been di�cult to get these programs to abide by the memory restric-
tions. Fortunately these programs could be kept in the service partition where the
full-OS still used demand paging.

The partitioning allowed further memory management tuning. Signi®cant im-
provements were obtained by modifying its custom kernel to use more e�cient,
larger virtual pages. However, the use of such large pages would have been impos-
sible if small tasks such as shell commands each had to be allocated a large page.
Since small interactive tasks were all segregated to the service and IO partitions the
large page approach was a success.

3.3.2. File systems and disks
A second pillar of OS design is the abstraction of disk (or other storage device)

details into a ®le. Unfortunately, as with demand paging, the standard ®le system
model is not appropriate for large distributed systems. The use of a ®le by the many
components of a single, integrated, high-speed application is radically di�erent from
the use of a ®le by many independent users. A common high-performance operation
is the coordinated reading or writing of a large data set between many processors
and many disjoint portions of ®le. Interfaces such as MPI-IO [14] and Sandia's PXI/
PDS/PIO have been designed to help application programmers easily express the
required coordination. Yet these interfaces are forced to shoe-horn the resulting,
naturally parallel data transfers into an explicitly serial, often high-overhead ®le
system. Some parallelism can be regained by having the interface program maintain
thousands of small ®les corresponding to each parallel data stream but this makes
changes in parallel shape di�cult and requires users to commit to only accessing the
data through the particular interface used to create the data.

Partitioning provides a possible alternative. Interfaces such as MPI-IO can run on
the compute partitions and be provided with a suitable virtual ®le system (initial
development seems likely to occur within Linux' VFS but most vendor OSs also have
some form of virtual ®le system). This local portion of the parallel ®le system (LPFS)
would be responsible for maintaining blocks of ®les used by the local application

1862 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

component. Advanced techniques in IO tra�c analysis could be used to tune the
prefetching, caching, etc. Mappings from data blocks to disk locations would be the
responsibility of the OS within the IO partition. A range of ®le system types could be
o�ered to the compute partition.

A very fast ®le system might optimize the mapping from ®le and block number to
host IO node by using a simple function requiring only a list of the IO nodes.
Compute nodes could cache this function once during a collective open call and then
perform all subsequent operations directly with the proper IO node. An MPI-IO
implementation which queries the local ®le-system for parallel shape could then
coordinate its accesses to maintain as full parallelism as possible. A well-de®ned
interface between the LPFS and the IO partition OS would allow the IO partition
hardware and software to develop independently of the compute partition. Thus,
new compute engines would not be forced to await the development of a suitable IO
subsystem but would instead plug into existing ones.

There is a great potential for improvement in this area. However, no approach,
including the one described above will be successful without the emergence of and
adherence to a set of common rules and conventions.

3.3.3. Debuggers and programming environments
System software is not limited to operating system maintenance of hardware. It

also includes the growing array of tools to which programmers and users of appli-
cations have become accustomed. For a programmer the most basic of these tools is
the compiler/runtime/debug suite used to create the programs. The debuggers for
high-performance machines lag the furthest behind the tools for serial machines.

Debugger development faces many di�culties, but we focus on just two: the ne-
cessity of extending debuggers across a network and the challenges in representing
data from hundreds or thousands of threads-of-control.

Traditionally the debugger runs on the same machine as the code being debugged.
In fact, the debugger takes control of the process ± all activity ®lters through the
debugger. The debugger also has direct access to program source. This model is hard
to apply to a distributed application. The debugger can be given control of every
process but it is no longer clear which debugger process is in charge. In short the
debugger must become a distributed program.

The partition model provides a simple strategy for the debugger. The control
portion of the debugger runs within the service partition using standard techniques.
(Using the workstation version the debugger in the service partition also keeps it up-
to-date and compatible with the latest compilers.) The portion of the debugger which
controls code (e.g., sets breakpoints, read memory locations, or writes to memory
locations) is distributed throughout the compute partition. These functions are
typically highly OS and hardware dependent. Yet they are also relatively simple and
of short duration. Thus OS extensions or modules may be unable to implement these
functions and make them e�cient. The e�cient implementation of debug functions
on a parallel machine is particularly important since many bugs involve the timing
between various nodes and slow debugging can alter the timing. In fact, it is a

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1863

challenge to write a parallel debugger that does not introduce false timings, change
race conditions and create out-of-order execution dilemmas.

The above model of debugger design still su�ers from information explosion. The
debugger must be able to ®lter responses to produce responses such as ``the common
value is x but processor p has value y''. Graphical trace trees or other multi-media
representations may be necessary. However, no amount of ®ltering and presentation
will change the fact that debugging of 100-way and higher parallel codes is extremely
di�cult.

We should not spend too much e�ort trying to make parallel debuggers look just
like serial debuggers only bigger. Instead fundamental research will have to be done
on ways to allow the computer to assist in debugging. For example, we may not be
able to ®nd a race condition on the update of a particular variable by stepping
through the code. Instead we may need utilities which ®rst apply strict protection
semantics to all variables and then progressively weaken the protection on subsets of
variables. When a set which results in a di�erent result is found a search can be made
to ®nd out which variable is the culprit.

Space does not allow a discussion of all the issues facing system software. Con-
tinued work will be required in the development of parallel job management systems
including batch queues. Heterogeneous systems will present many new problems not
the least of which will be the maintenance of a reliable, robust, and secure system.
New interconnection network hardware will continue to make fast, safe data
movement a di�cult research topic.

4. Algorithms and applications: The software challenge

4.1. Parallel programming

The principle objection to parallel computers is that they are di�cult to program.
There is a signi®cant component of truth in this claim, particularly for large-scale
parallel machines. However, it has been our experience that for most scienti®c cal-
culations, the complexity of this task has been overrated.

There are three reasons why parallel programming is more challenging than serial
programming. First, parallel programs must include the mechanics of exchanging
data between processors or handling mutual exclusion regions. This adds complexity
to both the semantics and the syntax of a program. Second, in an e�cient parallel
program the work must be evenly divided among processors. This is an algorithmic
challenge with no serial counterpart. Third, the data structures must be divided
among processors to preserve data locality. This is obviously true for distributed-
memory machines in which data movement is costly. It is also true for shared-
memory machines since locality reduces the cost of maintaining cache coherence.
This issue has a counterpart in serial programming since data locality is also essential
for good cache performance on serial machines. However, the performance impli-
cation is much greater in parallel. In general, the task of reducing parallel overhead,

1864 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

managing processor synchronization and balancing the work load makes it di�cult
to write e�cient and scalable parallel code.

To assist the programmer in meeting these challenges, several di�erent parallel
programming methodologies have been seriously pursued; each has its shortcomings.
The SIMD approach proved to be too in¯exible and limiting, so it is now only used
in niche applications. HPF, with its SIMD-like design, has foundered. Automatic
parallelization of sequential code can be very useful for relatively simple programs
on small numbers of processors, but is currently of little value on larger machines.
Language extensions like Split-C [6] or Titanium [18] have generated signi®cant
academic interest but minimal usage in the wider community. A key reason for this is
the chicken-and-egg problem that programmers are understandably reluctant to use
a language which lacks vendor support, and likewise vendors will not support a new
language no one is using. By the metrics of vendor support and number of users, the
two most successful parallel programming methodologies are explicit message
passing as standardized by MPI, and shared-memory emulation as instantiated in
OpenMP. Of these, only MPI can currently be described as an unquali®ed success ±
OpenMP is su�ciently new that the jury is still out.

New architectures combining a large number of SMP nodes present a new set of
challenges. Message passing (e.g., MPI) emulation on the SMP node is often absent
or ine�cient, so that threads-based programming is preferred within a node. At the
same time, threads-based programming techniques generally do not scale to large
number of nodes, so that message passing is preferred between nodes. Mixing pro-
gramming models can make the already complex task of algorithm designing even
more di�cult.

Although explicit message passing can be tedious and error prone, it has a key
advantage over other approaches. It focuses the programmer's attention on the
performance-critical issue of the parallel hardware ± data locality. Message passing
requires a processor to own (or acquire) in its local memory all the data it needs for
its computations. An implementation that achieves substantial data locality is re-
warded with high performance and scalability on distributed or shared-memory
platforms. The price for this is in the complexity of algorithmic design and imple-
mentation; as yet no compiler or automatic tools can do this adequately.

Thus, the real challenge of programming large parallel machines is not in the
expression of the parallelism, but rather in designing and implementing scalable,
data-local algorithms. This is particularly true on large-scale parallel machines, since
as the number of processors increases, latent unscalability is exposed. Scalability
analysis is an important tool in devising parallel algorithms, speci®cally the quan-
ti®cation of the communication requirements of an algorithm. Unfortunately, many
real applications are too complex to be easily modeled in this way. Calculations that
involve multiple phases, multiple synchronization points or adaptivity are not easily
amenable to analysis. In the end, parallel algorithm development for complicated
problems often involves as much practical engineering as does theoretical science. It
is worth noting that the most studied academic model of parallelism, the PRAM,
does not even account for communication cost. And even the more realistic models
like LogP, BSP, and their many descendants are not widely used by practitioners.

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1865

Having said that, it is worth noting that, although we do not use any of the formal
models explicitly, the parallel programming style which we have found most e�ective
is broadly consistent with the BSP methodology.2 Speci®cally, we like the pro-
gramming discipline imposed by BSP's superstep concept in which phases of local
computation are interleaved with phases of data exchange.

Sandia has acquired a series of large-scale parallel machines over the past decade
that have been conveniently homogeneous in architecture. They have all been true
distributed-memory machines with a thousand or more relatively low-end processors
and fast proprietary communication networks: an nCUBE 1 (1024 custom procs),
nCUBE 2 (1024 custom procs), Intel Paragon (3800 i860 procs), and currently the
Intel T¯op machine (9300 Pentium procs). These machines have required us (a
luxury or burden, depending on your outlook) to (1) code all our algorithms and
applications in the lowest-common denominator style of message-passing and to (2)
pay careful attention to scalability in order to run e�ciently on thousands of pro-
cessors. These requirements have taught us several useful rules-of-thumb about
parallel algorithm design.

(1) The parallelism is in the problem, not in the code. Thus it is important that the
programmer understands the problem being solved.

(2) To paraphrase the real estate mantra, there are three important issues in good
parallel algorithm design: locality, locality, locality. This means creating distributed
data structures and choosing decompositions (assignments of data to processors)
that minimize inter-processor communication. Though these choices can be viewed
as a programming burden, they are at the heart of designing an e�cient parallel
algorithm. The real challenge is devising algorithms and decompositions in which
locality is enforced and, simultaneously, the work load is balanced.

Distributed-memory machines or programming models like OpenMP which
provide the illusion of shared memory (i.e., through a global address space) are
convenient for the programmer and can simplify the code development process. This
ease of expression can lull the developer into the illusion that data locality is not
important, but on large number of processors it always is. Even on machines that
provide global address spaces, a programmer must eventually confront the same set
of algorithmic challenges posed by explicit message passing.

(3) For scienti®c computing problems, it is generally the case that the fastest
parallel algorithm is an implementation of the best serial algorithm. This may change
in the future as even more complex applications are tackled, but it has been the case
to date. In the early and mid 1980s, it was widely assumed that the arrival of parallel
computers would lead to a rash of new algorithms motivated by parallelism. Within
scienti®c computing, this has generally not happened. For example, the initial ex-
citement about asynchronous iterative solvers which looked well suited to parallel
architectures has largely abated. Instead, the past decade has seen a focus on the
e�cient parallelization of existing serial algorithms, such as preconditioned conju-
gate gradient and multi-level algorithms. One reason for this is that large parallel

2 More information about BSP can be found at http://www.bsp-worldwide.org/.

1866 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

machines allow for the solution of large problem instances. Ine�cient serial algo-
rithms become prohibitively expensive, even if they parallelize well. To put it another
way, parallel scalability is generally less important than algorithmic scalability.

Fundamentally, new algorithms have been required principally where parallelism
generates new issues which lack serial counterparts. Speci®cally, novel algorithms
have been required for problem decompositions, load-balancing and collective
communication operations.

(4) Attention should be paid to load-balance at the very beginning of the design
process. A load-imbalance of a few percent on a few processors will typically amplify
to kill scalability on hundreds or thousands of processors.

(5) At a particular stage of a complex application, there is often a decision to be
made about which processor will perform what work (choosing a decomposition).
Typically this decision involves a trade-o� between load-balance and communication
cost. That is, to load-balance the work, more communication must be done to get
data on the right processor, or vice versa. In accordance with the previous point, we
have found load-balance is usually the more important factor in this trade-o�.
Current machines typically have fast enough communication networks to justify the
extra data movement, though this may be less true on the increasingly popular build-
your-own Beowulf-class clusters.

In aggregate, these issues pose an initial barrier to developing a new algorithm or
porting an existing application to a parallel machine. However, our experience has
been that once a good algorithm is devised, its implementation is not much more
di�cult than serial programming. The reward is high performance and scalability in
the ®nal product.

4.2. Parallel tools and applications

In the past decade the study of parallel algorithms for scienti®c computing
problems has matured signi®cantly. Ten years ago the best parallelization strategies
for most scienti®c problems were still uncertain. Today, in many domains the par-
allel algorithms are well understood and the principal e�orts are devoted to the
development of good tools and libraries to encapsulate the results of the algorithmic
research.

This maturation has proceeded at a di�erent pace for di�erent applications. Dense
linear algebra calculations and regular grid ®nite di�erence codes were among the
®rst to mature. More complex calculations followed later like particle simulations,
unstructured grid ®nite element methods and iterative solvers. A number of highly
challenging computations are still in the algorithmic-research stage. Among these are
sparse direct methods, radiation transport, good parallel preconditioners and
adaptive calculations.

The maturation of the ®eld has taken longer than many predicted for several
reasons. One is that most observers underestimated the di�culty of devising good
parallel algorithms for even comparatively simple calculations. As an example, the
early dense linear algebra codes all used one-dimensional decompositions and it was
not until the early 1990s that the superiority of two-dimensional decompositions was

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1867

widely accepted. A second reason is that, as discussed above, parallel software is
inherently more complex than serial software. The Fortran 77 coding style that
predominated in the 1980s was an impediment to rapid progress. In recent years, the
scienti®c computing community has eagerly adopted more modern software devel-
opment techniques, particularly object orientation. In the short run this change
consumed time as the community learnt new languages and paradigms. But it will
undoubtedly lead to better tools and libraries in the long run.

While research issues remain in all areas of parallel computing, mature libraries
and tools have emerged for many kernel computations. For developers working on
new application codes, these tools signi®cantly simplify the writing of parallel soft-
ware. They also allow developers to work at a higher level of abstraction and avoid
low-level coding. For example, SCALAPACK [4] is now a standardized dense linear
algebra library for parallel machines, similar to LAPACK in spirit. Parallel sparse
matrix libraries such as PETSc [3] and AZTEC [12] provide a rich set of iterative
solver and preconditioner options to the user. Partitioning tools such as Chaco [11]
and METIS [13] are widely used to create near-optimal decompositions of grids or
other computational loads across processors.

In many areas where libraries are di�cult to develop, the basic algorithmic issues
are well understood. This understanding has led to the emergence of powerful
frameworks for applications development like PETSc [3] and POOMA [1]. As with
standard libraries, these tools simplify software development and raise the level of
abstraction.

Another important metric for measuring the maturity of scienti®c parallel soft-
ware is by the complexity of applications that have moved to parallel platforms. In
the early days of parallel computing, the majority of successful applications were
user-written research-level codes designed to model a particular narrow problem in
science or engineering. The early application conferences in this ®eld were rich with
papers where individual researchers, many of them students, had written their own
new parallel code from scratch to simulate a particular phenomenon. Such codes
were often small ± a few thousand lines. If the physical phenomena were innately
parallel, such codes often performed very scalably on hundreds or even thousands of
processors on early machines, though it was only on very large parallel machines that
they could compete in terms of raw performance with the multi-head vector su-
percomputers of the day (e.g., the Cray Y-MP).

In the last few years, we have begun to see full-scale engineering and science
applications run scalably on parallel machines. Often these packages encompass a
rich feature set, tens to hundreds of thousands of lines of code, and a large user base.
We cite a few examples:
· ®nite element ¯uid ¯ow: SALSA [7];
· molecular modeling: NWCHEM suite [15], QUEST [16], CHARMM [5];
· transient dynamics: PRONTO [2];
· particle in cell electrodynamics: 3DPIC [8].

These codes are all scalable and achieve very high performance, as evidenced by
the recent entry of many of them in the Gordon Bell competition. This IEEE-
sponsored contest gives awards each year to applications which perform at the very

1868 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

high end of parallel computing. The ®rst ®nalists 10 years ago were small research
and proof-of-concept codes that ran at less than 1 G¯op/s. 10 years later, large
production-scale codes dominate the competition and the performance of the 1998
winner reached the 1 T¯op/s (sustained) performance milestone [17]. This is a re-
markable thousand-fold increase in only 10 years! Much of the increase is due to
faster hardware and larger machines, but it is also impressive that code complexity
has kept pace as application developers have become more accustomed to thinking
in parallel and more sophisticated in their algorithm development.

A key feature all of these applications and libraries have in common is that they
were written essentially from scratch with parallelism in mind. In some cases this
meant starting with an empty ®le. In others, legacy code was kept, but a fundamental
redesign of data structures, code structure, and solution methods was necessary for a
distributed-memory implementation. This is clearly costly in terms of development
time. But once it is ®nished, the new version replaces the old one, and it runs por-
tably on either serial machines or any kind of parallel platform.

By contrast, several of these applications have competitors that have not yet made
the transition to massively parallel, at least in the commercial or most widely sup-
ported versions. For example, the DYNA package for transient dynamics and
GAUSSIAN code for molecular modeling have resisted fully scalable parallel im-
plementation. This is primarily due to the sheer volume of legacy serial code and
man-years of development invested in these very popular applications. The inability
to create parallel versions of such codes for their broad user communities has been
the Achilles heel of parallel scienti®c computing. It is an open question whether such
popular legacy codes will ever be implemented in parallel, or will be supplanted by
their competitors, or whether their lack of existence will prove to be the eventual
downfall of high-end parallel computing.

5. Parallel computing in industry

Private industry plays the role of both producer and consumer of parallel com-
puting. On the producer side, computer hardware and software companies build the
components that are in turn used to build large-scale parallel computers. In fact,
large-scale parallel computers are economically feasible to build only because the
cost of component development is spread across a variety of other end-products. On
the consumer side, there are many industrial applications that are voracious con-
sumers of parallel computing, many of these applications, e.g., parallel web servers,
being far a®eld from the original parallel computing application base.

One of the most dramatic in¯uences on parallel computing over the last decade
has been the tremendous growth in the use of computers and networks in businesses
and industries outside of traditional computational science and engineering. As a
result of this growth, and the relatively slower growth in the demand for computers
for science and engineering applications, we ®nd that large-scale parallel computing
customers have minimal in¯uence today on the design of new computer components.
At the same time, because of the increased demand for more powerful computers

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1869

and networks in other ®elds, large-scale parallel computing has bene®ted greatly
from having much lower cost components, even if the components are not optimally
designed for science and engineering applications. Two speci®c results of the growth
in computing outside of science and engineering applications are the decline of MPP
computers and the corresponding rise in SMP systems and commodity-o�-the-shelf
(COTS) systems. We discuss these in more detail below.

5.1. The decline of MPP systems

In the mid 1980s MPP computer systems were predicted to be the next big ad-
vance in high performance computing. Many new companies, e.g., nCUBE,
Thinking Machines, Kendall Square Research, etc. were formed to build MPP
systems. In addition, several existing companies such as Intel, IBM and Cray Re-
search also decided to design and build these systems.

In those early days, a few universities, national laboratories, petroleum companies
and large weather forecasting facilities were among some of the organizations that
embraced MPP systems and made them work. These organizations had compelling
need for the performance MPP systems promised and also had the resources to build
an infrastructure to support the vastly di�erent computing model that MPP systems
required.

Ultimately, however the industrial marketplace, as a whole, has not adopted MPP
systems. There are many opinions as to why MPP systems has not succeeded in
industry, but we believe it is primarily because many of the key applications have not
been successfully ported and integrated into the existing computing environment.
There have been many notable e�orts to get industrial applications working well on
MPP systems and some succeeded, but many did not. Even those e�orts that have
been ultimately successful came too late to save the industrial MPP marketplace. A
second contributing factor to the decline of MPP systems in industry is the steady
increase in capabilities of workstations and PCs. These low cost systems have pro-
vided a doubling of single processor performance every 18±24 months with little or
no change required in applications, and furthermore have started coming in multiple
processor con®gurations. These developments have had an impact on the entire
high-end computer system market, and have made it especially hard to justify large-
scale e�orts to get MPP systems working.

Without a large industrial customer base, MPP computer companies could not
stay in business. As a result, most computer systems that were designed to be
commercially available MPP systems are either gone or on their last generation. The
exceptions are Compaq, which will introduce an SMP-node MPP, and IBM, which
shows no signs of quitting their MPP development. Most major MPP systems de-
velopment e�orts today are focused at national laboratories or are being developed
to address other very speci®c customer needs. However, even though commercially
available MPP systems have declined, large-scale parallel computing in industry has
gained new momentum, and the e�orts in parallel application development have
found new types of computer systems that can deliver impressive performance im-
provements.

1870 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

5.2. The rise of SMP and COTS systems

The decline of MPP systems in industry did not mean the decline of parallel
computing in industry. In fact, the growing availability of SMP computer systems
and, even more interestingly, the growth of COTS systems have given parallel
computing new momentum in the industrial marketplace.

SMP systems. SMP systems are available from many computer system vendors.
The most important reason for the success of SMPs is that they provide a ¯exible
platform for a variety of uses. They can simultaneously be viewed as (i) a better
throughput engine for many independent computer jobs, (ii) a shared-memory
parallel system to provide incremental performance improvements for a few com-
pute-intensive segments of an existing serial application and (iii) a distributed-
memory system with fast message passing.

Item (i) above is by far the most important reason for the success of SMP systems.
It provides a cost-e�ective means of increasing the computing capacity for many
di�erent types of computer users. This type of parallel computing is at the job level
and generally not of interest to the parallel computing community. However, it is
important because it has made SMP systems a commercially successful product.

Item (ii) is increasingly becoming a reason for growth in SMP systems sales. This
is driven primarily by the soon-to-be ubiquitous presence of SMP PCs along with
OpenMP, an emerging standard for SMP programming. However, the e�ectiveness
of this type of parallelism is usually limited to a few processors because only small
sections of the code are rewritten and the rest runs in serial mode. In fact, successful
parallelism, even for a small number of processing elements, is seldom achieved
automatically. Signi®cant code modi®cations, directives or other programmer in-
terventions are often required for e�cient parallelism.

Item (iii) is of most interest to us. It would seem that running an SMP system and
pretending it has distributed memory would be a waste of the SMP hardware, but it
is in fact often the best way to use an SMP system that has a lot of processors. This is
because almost all SMP systems have an NUMA architecture, primarily in the form
of a large secondary cache. Treating memory as distributed increases the locality of
memory reference. It also reduces false-sharing cache con¯icts, memory-bank con-
¯icts and other problems that make UMA SMPs non-scalable. Furthermore, if the
message passing library is customized for the SMP hardware, it can be implemented
with memory copies and achieve e�cient and scalable parallel performance.

COTS systems. In addition to SMP systems, COTS systems are becoming a very
important parallel computing platform. Low cost, high performance PCs, work-
stations and networking systems, along with increasing interest in Linux, give us the
ability to create inexpensive and powerful parallel distributed memory computers
from components that are available at your local shopping mall, or from your fa-
vorite online dealer. As with SMP systems, COTS systems are made possible because
the components that go into building one are useful to the general computing
community. The growing availability of COTS systems also increases the attrac-
tiveness of distributed-memory applications. No longer do you need a high priced
computer to bene®t from parallelism, unlike SMP systems, which become very

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1871

expensive beyond a small number of processors. COTS systems can currently in-
expensively deliver scalable parallel performance on tens of processors for the right
types of applications. Certainly large-scale COTS systems require some modi®cation
of system hardware and software to get good performance on a broad set of ap-
plications, as is exempli®ed by the CPlant project at Sandia, but the investment is far
less than that required to develop a custom designed computer system.

Shortcomings. SMP and COTS systems certainly have shortcomings that can
make them less attractive to parallel computing users than MPP systems. In par-
ticular, SMP systems are typically not set up to dedicate a set of processors to an
entire application. Instead, SMP systems are usually set up to share resources dy-
namically, meaning processors will come and go from a particular job during the life
of that job. Although this appears to be a trivial issue, it is in fact something that is
only slowly being addressed by SMP systems vendors. A further complication of
SMP systems comes from cache coherency. Distributed memory applications do not
need, and do not want cache coherency across processors. Unfortunately, this fea-
ture is part of the hardware support and cannot be shut o�. As a result, false cache
line sharing can seriously degrade performance of parallel applications.

COTS systems are currently not widely used in many industries because the COTS
system is not really a single system but a collection of systems and there is a build-it-
yourself requirement. Currently there are a few universities, research laboratories
and small companies that are addressing this issue and having good success. They
are taking these individual components and integrating them both physically in
terms of packaging and also logically in terms of a layer of administrative software
to make the cluster look as much like a single system as possible. We see this trend
continuing, and think that eventually larger companies will also be providing these
types of systems and support.

5.3. The status of parallel computing in industry

Parallel computing in industry must objectively be considered a secondary issue,
except in enterprises who care a great deal about large-scale scienti®c and engi-
neering applications, e.g., oil exploration and automotive companies. Other factors
like cost (especially cost of ownership), accuracy and relevance of results, and in-
tegration of computers into daily business practices are much more important to
most industrial computer users. At the same time, the emergence of SMP systems,
especially multi-processor PCs, and the growing ease of setting up inexpensive COTS
systems promise to make access to parallel computing easier and more cost e�ective
than ever before.

Parallel computing has an established foothold in many industrial markets. Most
notably, some parts of the aerospace industry have used parallel cluster computing
for more than a decade to do large computational ¯uid dynamics (CFD) calcula-
tions. High-end workstations, used during the day by CAD engineers, are trans-
formed into parallel computers for external air¯ow calculations during the o� hours.
Fault tolerance, batch processing and load-balancing are built into the application

1872 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

since there is minimal OS support. By taking this approach, the aerospace industry
has been able to utilize a latent computing resource.

A relatively small number of industries have driven the demand for large-scale
parallel machines. These include the oil and gas industry and the automotive in-
dustry. The increased availability of parallel commercial codes has increased the use
of parallel machines. For example, parallel CFD codes are becoming commonplace
in a variety of engineering markets as a result of the successful introduction of
parallel version of many of the most important general purpose CFD packages, e.g.,
FLUENT, STAR-CD, CFX, etc. Similarly, parallel versions of industry-standard
applications are being slowly introduced in many other markets, including auto-
motive, chemical/pharmaceutical, oil and gas, environmental and electronics.
However, with few exceptions the process of introducing parallel computing into the
production-computing environment is clearly in the early stages of development.

Interestingly, it is the growing availability of SMP and COTS systems, systems
that were not custom-designed for parallel applications, that is ®nally spurring the
growth in industrial parallel computing. The wide availability of these systems is
what has broadly attracted the attention of application software vendors to parallel
computing, something that custom-designed MPP systems could not accomplish.
The tremendous growth of computing in industry over the past decade, and cor-
responding decrease in costs, is transforming parallel computing from being
something highly specialized and available to only a few specialists into something
that is accessible to anyone with a few PCs, network cards and a hub. This is a
welcome change because it increases the base of parallel computing platforms, the
number of parallel computing users and the number of parallel application devel-
opers. However, we hold no illusions that the increase in number of low-end parallel
systems makes high-end systems easy to build or use. A great deal of e�ort is still
required to utilize e�ectively hundreds or thousands of processors within a single
application.

6. US Government involvement in MPP computing

The US Government and its national laboratories have had a major impact on
high performance computing from its inception, both through funding and tech-
nology development. In the 1960s and early 1970s, CDC's successes with the CDC
1604, CDC 6400, CDC 6600 and CDC 7600 computers were driven by the needs of
government laboratories and government-funded universities. From the mid-1970s
Cray Research depended on government laboratories as the ®rst adopters of its
Cray-1S, Cray X-MP, Cray Y-MP and C-90 parallel vector processors. These two
families dominated high performance computing until the advent of MPP.

In the 1980s and early 1990s, DARPA funded computer architecture research at
Thinking Machines Corporation and Intel Corporation. This funding directly im-
pacted the development of the Connection Machine and the Paragon. A third major
vendor at the time, nCUBE, entered into a partnership with Sandia National Lab-
oratories. Although none of these three vendors currently build supercomputers,

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1873

they played a key role, along with Cray Research, in developing and demonstrating
massively parallel computing technology.

A number of federal laboratories have developed important high performance
technologies. Sandia was a leader in demonstrating the practicality of solving real
engineering and science problems on massively parallel computers ± its load-bal-
ancing software (Chaco) and parallel iterative solver library (Aztec) have been li-
censed to hundreds of users. Oak Ridge National Laboratory developed the widely
used PVM software that enables applications to execute across distributed com-
puters. Los Alamos National Laboratory successfully implemented a widely used
ocean circulation model on the CM-5. Argonne National Laboratory and Sandia
have pioneered the development of immersive visualization technology so that users
could more easily interpret and interact with the huge data sets that are generated on
massively parallel computers.

Universities have also made key contributions to MPP technology. Much of this
work has been funded by DARPA, NSF and DOE. Caltech helped develop much of
the early scalable parallel hardware technology. The Pittsburgh Supercomputer
Center made MPP computing widely available to university researchers with its T3D
and T3E systems.

More recently, the US Department of Energy's Accelerated Strategic Computing
Initiative (ASCI) has funded the development of high-end supercomputing tech-
nology. ASCI has supported research partnerships between Sandia and Intel,
Lawrence Livermore National Laboratory and IBM, and Los Alamos National
Laboratory and SGI/Cray. All three of these partnerships are aimed at tera-scale
computing.

7. Summary

In this paper, we have discussed the major aspects of massively parallel com-
puting, including hardware, system software and algorithms. Progress in parallel
computing has been slower than expected, but both hardware and software have
continued to advance. The current generation of massively parallel computers
achieves peak computational rates in excess of two T¯ops, far exceeding the per-
formance of the best single processor computers. And massively parallel computing
is now widely used in production in government and some industrial applications,
e.g., oil and gas applications. The speed of MPP computers has depended on ad-
vances in both microprocessors and interprocessor communication networks. We
expect further signi®cant increases in hardware capabilities, and we expect that the
trend towards the use of commodity components will continue.

System software and development environments have considerably lagged hard-
ware and algorithm development, and have often been adaptations of workstation
software. Yet, despite this and the fundamental challenges of fast changing hard-
ware, commoditization, 64-bit addressing, and shared memories, system software is
likely to improve. The use of partitioning within a machine to reduce the concurrent
requirements on the software allows for simpler solutions. The advent of open

1874 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

operating systems (such as OpenBSD, Linux, and Solaris) allows the creation of
prototypes and the performance of fundamental research. If the high-performance
community makes a commitment to provide access to hardware for system software
research and development, there should be a signi®cant payo�.

Finally, we are optimistic about the future of high-end parallel scienti®c com-
puting algorithms and software. The reasons for this optimism include:
1. the emerging availability of parallel libraries and frameworks;
2. the maturation of parallel algorithms for common application areas such as ®nite

element codes;
3. the growing cadre of programmers who are comfortable with the e�ort involved

in writing message-passing codes; and
4. the ubiquitous low-end hardware that is making moderate and even large-scale

parallel computers available to the masses, which will increase the supply of
and demand for parallel codes.
During the past decade, parallel computing has provided a rapid increase in

modeling and simulation capabilities for science and engineering, a capability of
which we are only beginning to take advantage.

References

[1] S. Atlas, S. Banerjee, J.C. Cummings, P.J. Hinker, M. Srikant, J.V.W. Reynders, M. Tholburn,

POOMA: A high performance distributed simulation environment for scienti®c applications, in:

Proceedings of Supercomputing'95, ACM and IEEE, San Diego, CA, December 1995.

[2] S. Attaway, T. Barragy, K. Brown, D. Gardner, B. Hendrickson, S. Plimpton, C. Vaughan, Transient

solid dynamics simulations on the Sandia/Intel Tera¯op computer, in: Proceedings of Supercomput-

ing'97, ACM and IEEE, November 1997.

[3] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, PETSc 2.0 users manual, Technical Report ANL-

95/11 ± Revision 2.0.22, Argonne National Laboratory, 1998.

[4] L.S. Blackford, J. Choi, A. Cleary, E.D. 'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,

S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLAPACK Users' Guide,

SIAM, Philadelphia, PA, 1997.

[5] B.R. Brooks, M. Hodo�s�cek, Parallelization of CHARMM for MIMD machines, Chem. Design

Automation News 7 (1992) 16±22.

[6] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, K. Yelick,

Parallel programming in Split-C, in: Proceedings of Supercomputing'93, ACM and IEEE, Portland,

OR, November 1993.

[7] K.D. Devine, G.L. Hennigan, S.A. Hutchinson, A.G. Salinger, J.N. Shadid, R.S. Tuminaro, High

performance MP unstructured ®nite element simulation of chemically reacting ¯ows, in: Proceedings

of Supercomputing'97, ACM and IEEE, November 1997.

[8] J.W. Eastwood, W. Arter, N.J. Brealey, R.W. Hockney, Body-®tted electromagnetic pic software for

use on parallel computers, Comput. Phys. Comm. 87 (1995) 178±455.

[9] D.S. Greenberg, R. Brightwell, L.A. Fisk, A. Maccabe, R. Riesen, A system software architecture for

high-end computing, in: Proceedings of Supercomputing'97, 1997. Available at http://www.super-

comp.org/sc97/proceedings.

[10] J.L. Gustafson, G.R. Montry, R.E. Benner, Development of parallel methods for a processor

hypercube, SIAM J. Sci. Stat. Comput. 9 (1998) 609±638.

[11] B. Hendrickson, R. Leland, The Chaco user's guide: Version 2.0, Technical Report SAND94±2692,

Sandia National Laboratories, Albuquerque, NM, October 1994.

D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876 1875

[12] S.A. Hutchinson, L.V. Prevost, J.N. Shadid, C.Tong, R.S. Tuminaro, Aztec user's guide: Version 2.0,

Technical Report ANL-95/11 ± Revision 2.0.22, Sandia National Laboratories, 1998.

[13] G. Karypis, V. Kumar, A fast and high quality multi-level scheme for partitioning irregular graphs,

Technical Report CORR 95±035, University of Minnesota, Department of Computer Science,

Minneapolis, MN, June 1995.

[14] MPI-IO: a parallel ®le I/O interface for MPI. The MPI-IO Committee, April 1996, Version 0.5. See

WWW http://lovelace.nas.nasa.gov/MPI-IO/mpi-io-report.0.5.ps.

[15] http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html, Technical Report, 1996.

[16] M.P. Sears, K. Stanley, G. Henry, QUEST: G¯op performer, in: Proceedings of Supercomputing'97,

ACM and IEEE, November 1997.

[17] B. Ujfalussy, X. Wang, X. Zhang, D.M.C. Nicholson, W.A. Shelton, G.M. Stocks, A. Canning,

Y. Wang, B.L. Gyor�y, High performance ®rst principles method for non-equilibrium states in

magnets, in: Proceedings of Supercomputing'98, ACM and IEEE, November 1998.

[18] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hil®nger,

S. Graham, D. Gay, P. Colella, A. Aiken, Titanium: A high-performance Java dialect, in: Proceedings

of Workshop on Java for High-Performance Network Computing, ACM, Stanford, CA, February

1998.

1876 D.E. Womble et al. / Parallel Computing 25 (1999) 1853±1876

